Mathletics

\square

Geometry

Series G - Geometry

Contents
Student book answers 1
Assessment 6
Student progress record 17
Assessment answers 18
Objectives 20

Series Authors:
Rachel Flenley
Nicola Herringer

Series G - Geometry

Page 1

1 A flower.

Page 2

1 90; less; more, 180; 180; 360; 360
b right
c obtuse
d reflex
e obtuse
f reflex

Page 3

1a 55
b 150
c 90

2

3 Answers will vary and may include:
a football player
b diver
c cricket player
d builder
e architect

4a

b

c

5a 30°
b 6°
6 Answers will vary.

Page 5

What to do

Answers will vary.

Page 6

What to do

There are 22 times. Answers will vary and may include:

Pages 7-9
1 square; isosceles triangle; 540°; 720°; trapezium; dodecagon; parallelogram or rhombus;

isosceles triangle;
Total of angles added together;

2360°

They also add to 360°.

3

They also add to 540°.
4 Answers will vary.

5a 4
b, c, d, f, g

e 2
6 Answers will vary.

Pages 10-11

1

square

rectangle

rhombus

Series G - Geometry

Pages 10-11

1

trapezium
2 Yes because it has 2 pairs of parallel sides, all sides are equal, and the opposite angles are equal.

or

c Answers will vary.
4a

b

Pages 12-13

a 180°
b equilateral

1d no
e 180°
f scalene

2a, d

b 180°
c right angle
e D and C
f DB and BC
g 180°
h isosceles

3 Answers will vary and may include:

- equal side = equal angle
- equilateral triangles have 3 equal sides and 3 equal angles
- scalene triangles have no equal angles or sides
- isosceles triangles have 2 equal angles and 2 equal sides

Pages 14-15

2a Answers will vary.
Sample answer:

Diameter is twice radius.

Page 16

What to do

circumference;
arc;
radius;
diameter;
centre;
sector;
ball

No;
Yes;
A ball wouldn't roll.;
No. A polygon has straight sides.;
Yes;
No;
5 cm ;
No;
30 cm

What to do

Observe students.

Page 17

Getting ready

360°

What to do

360°

What to do next

decagon
10
angle $\frac{36^{\circ}}{}$
lines
\qquad
\qquad

Page 18

Getting ready

Teacher check.

What to do

Series G - Geometry

Page 18

What to do next

Answers will vary.

Page 19

1

2a

b

c

Page 20

1a 4
b 8
c 0
d 3

2a-e Observe students.

Pages 21-22
1a reflected
b translated
c rotated
20
$d \rightarrow p$
$b \rightarrow q$
$\mathrm{n} \rightarrow \mathbf{u}$
$\mathbf{u} \rightarrow \mathbf{n}$
$M \rightarrow W$
$W \rightarrow M$

3 SOS It is always the same.
4

5a

b

6 Answers will vary.

Pages 23-24

1 - right angled triangles, squares

- large hexagons, small equilateral triangles
- equilateral triangles
- large hexagons, small squares, small triangles
- large dodecahedrons, small hexagons, small squares
- large dodecahedrons, small triangles

2

3a 180
b 60
c 6
c 3
d 360
d 360
e $3,3,3,3$
e 6,6,6

43 angles meet
$2 \times 135^{\circ}=270^{\circ}$
$1 \times 90^{\circ}=\frac{90^{\circ}}{360^{\circ}}$
5 hexagon angle $=120^{\circ}$
$4 \times 60^{\circ}$
$=\frac{240^{\circ}}{360^{\circ}}$

6 Observe students.

Page 25

2a 2 times as long.
b No
c No
d Yes

Page 26

Getting ready

Observe students.

What to do

Observe students.

What to do next

Answers will vary.

Page 27

What to do

Answers will vary.

Pages 28-30

1 Answers will vary and may include:

- 2D shapes have length and width.
- 3D shapes have length, width and height.
- A 2D shape can be cut out on a piece of paper. It is flat.

2a 6;12; 8
b 6; 12; 8
c $5 ; 8 ; 5$
d 6; 10; 6
3a-c Answers will vary.

Series G - Geometry

Pages 28-30
4a cylinder
b octahedron
c square-based pyramid
d sphere
e

f icosahedron
g tetrahedron
h cone
i pentagonal pyramid
j pentagonal prism
k torus
Teacher check.

5

Polyhedron	Triangular prism	Square based pyramid
Number of faces (F)	5	5
Number of vertices (V)	6	5
Number of edges (E)	9	8
		F+V-E $=$ Formula

Polyhedron	Cube	Rectangular prism
Number of faces (F)	6	6
Number of vertices (V)	8	8
Number of edges (E)	12	12
		F+V-E $=$ $\underline{6}+\underline{8}-\underline{12}=\underline{2}$
Formula	$\underline{6}+\underline{8}-\underline{12}=\underline{2}$	

$F+V-E=\underline{2}$
6 Answers will vary.

Page 31

square pyramid pentagonal pyramid
hexagonal prism triangular prism

2 Answers will vary.

Page 32
pentagonal pyramid $\underline{\text { e }}$
triangular pyramid \underline{b}
hexagonal prism g
triangular prism \underline{C}
pentagonal prism \underline{d}
hexagonal pyramid \underline{f}
cube
a

Pages 33-34

1a

b

c

d

e

f

g

h

2 Answers will vary.
3 tetrahedron or triangular based pyramid

4 Answers will vary.
5 Answers will vary. Possible answers:

Page 35

Getting ready

Observe students.

What to do

Answers will vary.

Page 36

Getting ready
Observe students.

What to do

List of shapes:
pentagonal prism, cube, hexagonal pyramid, triangular pyramid, triangular prism

Page 37

What to do

rectangular prism

- square
- rectangle
square pyramid
- square
- triangle

pentagonal prism
- pentagon
- rectangle

pentagonal pyramid
- pentagon
- triangle
triangular prism
- triangle
- rectangle
hexagonal pyramid
- hexagon
- triangle
cube
- square

Series G - Geometry

Page 37

What to do next

rectangular prism (square) cube (square) square pyramid (triangle) triangular prism (rectangle) hexagonal prism (hexagon) hexagonal pyramid (triangle) pentagonal pyramid (pentagon) pentagonal prism

Pages 38-39

28 of each
Answers will vary. Possible answers:
half turns north to south quarter turns south to west three-quarter turns north to west eighth turns north to northeast

3 Observe students.
4

Pages 40-42

1

2a (1, 2)
b $(-4,0)$
c $(-3,-2)$
d $(3,-5)$
e $(5,1)$
f $(-5,4)$
g $(1,-3)$
3 Answers will vary.

4a parallelogram

b Answers will vary.
c $(-3,-2)$

Page 43

Page 44
What to do
Observe students.
What to do next
Teacher check.
\qquad
1 Use a ruler and pencil to draw:

b 2 intersecting lines	

c 2 perpendicular lines

2 Complete the following:
a draw the diagonals on this shape

b mark the interior angles on this shape

c mark equal sides on this isosceles triangle

3 Label these angles as reflex, right, obtuse, acute, straight or revolution:
b

a
\square angle

c

d

\square angle
e

\square
f

Lines and angles

\qquad
4 Use a protractor to measure the interior angles of the following angles. Label each measured angle:
a

b

C

5 Use a protractor, ruler and pencil to complete the following angles:
a

b
c

d 125°

6 Use a protractor, ruler, pencil and strategy of your choice to measure this exterior angle:

Skills	Not yet	Kind of
- Knows terms parallel, perpendicular, intersecting, diagonal and interior, and identifies and marks equal sides		
- Recognises and labels acute, obtuse, straight, right angled, revolution and reflex angles		
- Measures and draws acute, right angled and obtuse angles		
- Measures reflex angles using strategy of choice		

\qquad
(1) What is a polygon? Use words and diagrams to explain your answer:
(2) Name the mystery polygons:

(3) Look at the regular pentagon on the right:

What is its angle sum?

(4) Find the missing angles:

5 Draw a polygon with
6 sides and 4 right angles.
You may like to sketch some practice shapes on scrap
paper first.

2D shapes
6 Match the triangles with their correct names:

right angle
 scalene
 equilateral

7 Use a protractor to help you draw a triangle where one of the angles is double one of the others. Label each measurement.

8 Match the correct term with the parts of a circle:

radius
centre
circumference
sector
diameter
9) If the radius of a circle is 8 cm , what is its diameter? \square

Skills	Not yet	Kind of	Got it
- Recognises properties of simple polygons and uses these to draw and name shapes			
- Finds unknown angles			
- Recognises different types of triangles			
- Knows that the angle sum of a triangle is 180° and uses this knowledge to construct a triangle			
- Names parts of a circle			
- Understands relationship between radius and diameter			

Transformation, tessellation and symmetry

\qquad

1 In each example, shade more dots to make the dotted line a line of symmetry:
a

b

2 Draw a shape that has 4 lines of symmetry. You may like to sketch out some ideas on scrap paper first.
(3) Do these pictures have rotational symmetry? If so, to which order?
a

Yes / No
Order: \qquad
b

Yes / No
Order: \qquad
c

Yes / No
Order: \qquad
d

Yes / No
Order: \qquad

Transformation, tessellation and symmetry

\qquad

4 Look at each pair of figures. Decide if Shape A has been reflected, translated or rotated to arrive at Shape B.
a

b

c

d

B
\square

5
Shade shapes a and b to show:

original
a

b

6 Continue this tessellation across the grid:

Transformation, tessellation and symmetry

\qquad

7 Why do quadrilaterals tessellate? Choose a quadrilateral to use as an example and explain using words and diagrams:

(8) Recreate this diagram so that it is twice as big:

Skills	Not yet	Kind of	Got it
- Identifies and draws lines of symmetry			
- Identifies rotational symmetry and order			
- Visualises, recognises and represents transformations - reflections, translations and rotations			
- Continues tessellations			
- Demonstrates understanding of why shapes tessellate			
- Enlarges simple drawings			

\qquad

1. Name the following 3D shapes and list their properties:

2 How are prisms and pyramids similar? How are they different? Explain using words and/or diagrams:
(3) Demonstrate Euler's formula, using this triangular prism as an example:

3D shapes

\qquad
(4) Circle the nets that will fold to make this square based pyramid:

b

C

d

e

(5) Finish the drawings using the bigger dots to guide you:

6 Use the dots to draw a triangular prism and a triangular pyramid:

Skills	Not yet	Kind of	Got it
- Identifies and names simple polyhedrons			
- Lists faces, edges and vertices of simple polyhedrons			
- Describes similarities and differences between pyramids and prisms			
- Demonstrates a working knowledge of Euler's formula and how it applies to simple polyhedrons			
- Visualises solids from nets			
- Draws simple 3D shapes			

\qquad
1 Add the missing compass points:
a

b

c

d If you were facing north and then made a clockwise three quarter turn, what new direction would you be facing?
e If you were facing north-west and then made a half turn, what direction would you be facing?
2) Draw a dot at each of the following coordinates on the grid:
a $(2,5)$
b $(1,1)$
c $(4,-2)$
d $(2,-3)$
e $(-4,-3)$
f $(-1,4)$
g $(-3,-5)$
h $(0,0)$

(3) Draw and label a pair of axes for all four quadrants. The dot marks the point $(0,0)$. Mark six different coordinate points with letters A to F and write their coordinates in the boxes.
a A \square
b B \square
c

d D

e \square
f F \square

Position

\qquad

4 These are the coordinates to draw a parallelogram, but one of them is missing. Draw the parallelogram on the grid to the right and fill in the missing coordinate.

$$
(-2,-3)(3,-3)(5,4) \square
$$

5 Translate the triangle so that point (1, 1) becomes point ($-4,-2$), and then reflect the original triangle in the x axis.

Skills	Not yet	Kind of
- Names compass points and identifies locations		
- Describes positions on the full coordinate grid		
- Draws and labels axes in four quadrants		
- Draws shapes on the grid and finds missing coordinates		
- Translates shapes and reflects shapes in the axes		

Series G - Geometry - Student Progress Record

Name \qquad Class
Date \qquad

What went well: \qquad
\qquad
\qquad
\qquad

What I need to improve: \qquad
\qquad
\qquad
\qquad -

Series G - Geometry - Student Progress Record
\qquad

What went well: \qquad
\qquad
\qquad
\qquad

What I need to improve: \qquad
\qquad
\qquad
\qquad
\qquad

Series G - Geometry

4a

5 Answers will vary.

7 Answers will vary.

$9 \quad 16 \mathrm{~cm}$

Pages 10-12

2 Answers will vary.
3a Yes; 4
b No
c No
d Yes; 3

Series G - Geometry

Pages 10-12
Aa reflected
b translated
c reflected
d rotated

6

-.
-•
7
.
-•
-•
. .

-

Answers will vary.
The vertices form 360° when they meet.

Pages 13-14

1a pentagonal; based pyramid; $\underline{6}$ faces; $\underline{10}$ edges; $\underline{6}$ vertices
b rectangular; based prism; $\underline{6}$ faces; $\underline{12}$ edges; $\underline{8}$ vertices
c square based; pyramid;
$\underline{5}$ faces; $\underline{8}$ edges; $\underline{5}$ vertices
2 Answers will vary and may include:
Similarities:

- straight edges
- 3D shapes

Differences:

- pyramids come to 1 point at the top
- prisms have 2 matching ends
$3 \mathrm{~F}+\mathrm{V}-\mathrm{E}=\underline{2}$
$5+6-9=2$

5

6 Answers will vary.

Pages 15-16

c

3a-f Answers will vary.
$4(0,4)$

Series G - Geometry

Topic	Reference	Strand	Substrand	Objective
Lines and Angles	6G4b	Geometry	Properties of shapes	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
2D Shapes	6G2a	Geometry	Properties of shapes	Compare and classify geometric shapes based on their properties and sizes.
2D Shapes	6G3a	Geometry	Properties of shapes	Draw 2D shapes using given dimensions and angles.
2D Shapes	6G4a	Geometry	Properties of shapes	Find unknown angles in any triangles, quadrilaterals, and regular polygons.
2D Shapes	6G5	Geometry	Properties of shapes	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.
Transformation, Tessellation and Symmetry	6P2	Geometry	Position and direction	Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
3D Shapes	6G2b	Geometry	Properties of shapes	Describe simple 3D shapes.
3D Shapes	6G3b	Geometry	Properties of shapes	Recognise and build simple 3D shapes, including making nets.
Position	6P3	Geometry	Position and direction	Describe positions on the full coordinate grid (all four quadrants).

