

Contents

Student book answers	1
Assessment	6
Student progress record	17
Assessment answers	18
Ohiectives	20

Series Authors:

Rachel Flenley Nicola Herringer

Page 1

1 A flower.

Page 2

- **1** 90; less; more, 180; 180; 360; 360
- **b** right
- **c** obtuse
- **d** reflex
- e obtuse
- f reflex

Page 3

1a 55

b 150

c 90

- 3 Answers will vary and may include:
- a football player
- **b** diver
- c cricket player
- **d** builder
- e architect

- **5a** 30°
- **b** 6°
- 6 Answers will vary.

Page 5

What to do

Answers will vary.

Page 6

What to do

There are 22 times. Answers will vary and may include:

Pages 7-9

1 square; isosceles triangle; 540°; 720°; trapezium; dodecagon; parallelogram or rhombus;

isosceles triangle;

Total of angles added together;

2 360°

They also add to 360°.

They also add to 540°.

4 Answers will vary.

5a 4

b, c, d, f, g

e 2

6 Answers will vary.

Pages 10-11

square

rhombus

Pages 10-11

2 Yes because it has 2 pairs of parallel sides, all sides are equal, and the opposite angles are equal.

c Answers will vary.

Pages 12-13

a 180°

b equilateral

1d no

e 180°

f scalene

b 180°

c right angle

e D and C

f DB and BC

g 180°

h isosceles

3 Answers will vary and may include:

- equal side = equal angle

 equilateral triangles have 3 equal sides and 3 equal angles

scalene triangles have no equal angles or sides

 isosceles triangles have 2 equal angles and 2 equal sides

Pages 14-15

2a Answers will vary. Sample answer:

b Diameter is twice radius.

Page 16

What to do

circumference;

arc; radius;

diameter;

centre; sector;

ball

No; Yes;

A ball wouldn't roll.;

No. A polygon has straight sides.;

Yes; No;

5 cm;

No;

30 cm

What to do

Observe students.

Page 17

Getting ready

360°

What to do

360°

What to do next

octago	n	
lines	8	
! angle	45°	

Page 18

Getting ready

Teacher check.

What to do

The angles form 360°

Page 18

What to do next

Answers will vary.

Page 19

Page 20

1a 4

b 8

c 0

d 3

2a-e Observe students.

Pages 21-22

1a reflected

b translated

c rotated

 $M \rightarrow W$

 $W \rightarrow M$

SOS It is always the same.

Answers will vary.

Pages 23-24

- **1** right angled triangles, squares
 - large hexagons, small equilateral triangles
 - equilateral triangles
 - large hexagons, small squares, small triangles
 - large dodecahedrons, small hexagons, small squares
 - large dodecahedrons, small triangles

3a 180

a 720

b 60

b 120

c 6

c 3

d 360

d 360

e 3, 3, 3, 3

e 6, 6, 6

4 3 angles meet

$$1 \times 90^{\circ} = \frac{90^{\circ}}{360^{\circ}}$$

5 hexagon angle = 120°

 $4 \times 60^{\circ}$

= 240°

(triangles)

360°

Observe students.

Page 25

2a 2 times as long.

b No

c No

d Yes

Page 26

Getting ready

Observe students.

What to do

Observe students.

What to do next

Answers will vary.

Page 27

What to do

Answers will vary.

Pages 28-30

- 1 Answers will vary and may include:
 - 2D shapes have length and width.
 - 3D shapes have length, width and height.
 - A 2D shape can be cut out on a piece of paper. It is flat.

2a 6; 12; 8

b 6; 12; 8

c 5; 8; 5

d 6; 10; 6

3a-c Answers will vary.

Pages 28-30

- 4a cylinder
- **b** octahedron
- c square-based pyramid
- d sphere

- **f** icosahedron
- g tetrahedron
- h cone
- i pentagonal pyramid
- j pentagonal prism
- k torus

Teacher check.

5	Polyhedron	Triangular prism	Square based pyramid
	Number of faces (F)	5	5
	Number of vertices (V)	6	5
	Number of edges (E)	9	8
	Formula	F + V - E =	F + V - E =
		<u>5</u> + <u>6</u> - <u>9</u> = <u>2</u>	<u>5</u> + <u>5</u> - <u>8</u> = <u>2</u>

Polyhedron	Cube	Rectangular prism
Number of faces (F)	6	6
Number of vertices (V)	8	8
Number of edges (E)	12	12
Formula	F + V - E =	F + V - E =
	<u>6</u> + <u>8</u> - <u>12</u> = <u>2</u>	<u>6</u> + <u>8</u> - <u>12</u> = <u>2</u>

$$F + V - E = 2$$

6 Answers will vary.

Page 31

square pyramid

pentagonal pyramid

hexagonal prism

triangular prism

2 Answers will vary.

Page 32

pentagonal pyramid e
triangular pyramid b
hexagonal prism g
triangular prism c
pentagonal prism d
hexagonal pyramid f
cube a

Pages 33-34

- 2 Answers will vary.
- 3 tetrahedron or triangular based pyramid
- 4 Answers will vary.
- **5** Answers will vary. Possible answers:

Page 35

Getting readyObserve students.

What to doAnswers will vary.

Page 36

Getting ready

Observe students.

What to do

List of shapes: pentagonal prism, cube, hexagonal pyramid, triangular pyramid, triangular prism

Page 37

What to do

rectangular prism

- square
- rectangle

square pyramid

- square
- triangle

pentagonal prism

- pentagon
- rectangle

pentagonal pyramid

- pentagon
- triangle

triangular prism

- triangle
- rectangle

hexagonal pyramid

- hexagon
- triangle

cube

square

Page 37

What to do next

rectangular prism (square) cube (square) square pyramid (triangle) triangular prism (rectangle) hexagonal prism (hexagon) hexagonal pyramid (triangle) pentagonal pyramid (pentagon) pentagonal prism

Pages 38-39

2 8 of each

Answers will vary. Possible answers:
half turns north to south
quarter turns south to west
three-quarter turns north to west
eighth turns north to northeast

3 Observe students.

Pages 40-42

2a (1, 2)

b (-4, 0)

c (-3, -2)

d(3, -5)

e (5, 1)

f (-5, 4)

g(1, -3)

3 Answers will vary.

4a parallelogram

b Answers will vary.

c (-3, -2)

Page 43

Page 44

What to do
Observe students.

What to do next Teacher check.

Use a ruler and pencil to draw:

Complete the following:

Label these angles as reflex, right, obtuse, acute, straight or revolution:

b

а

angle

angle

angle

d

C

Lines and angles

4 Use a protractor to measure the interior angles of the following angles. Label each measured angle:

а

k

C

Use a protractor, ruler and pencil to complete the following angles:

а

h

90°

c 33°

٨

125°

6 Use a protractor, ruler, pencil and strategy of your choice to measure this exterior angle:

Skills	Not yet	Kind of	Got it
Knows terms parallel, perpendicular, intersecting, diagonal and interior, and identifies and marks equal sides			
Recognises and labels acute, obtuse, straight, right angled, revolution and reflex angles			
Measures and draws acute, right angled and obtuse angles			
Measures reflex angles using strategy of choice			

1 What is a polygon? Use words and diagrams to explain your answer:

- 2 Name the mystery polygons:
 - a I have 4 equal sides and 4 equal angles. I'm a
- b I'm a 3 sided polygon.I have 2 equal sides and angles. I'm an
- c I have 4 sides and 4 angles. I have 1 pair of parallel lines. I'm a

- d I have 8 sides and 8 angles.
 I'm an
- e I have 6 sides and 6 angles.

 My angle sum is 720°. I'm a
- I'm a quadrilateral. Both pairs of opposite sides are parallel. I'm a

3 Look at the regular pentagon on the right:

What is its angle sum?

4 Find the missing angles:

Draw a polygon with 6 sides and 4 right angles. You may like to sketch some practice shapes on scrap paper first. 6 Match the triangles with their correct names:

Use a protractor to help you draw a triangle where one of the angles is double one of the others. Label each measurement.

8 Match the correct term with the parts of a circle:

9 If the radius of a circle is 8 cm, what is its diameter?

Skills	Not yet	Kind of	Got it
Recognises properties of simple polygons and uses these to draw and name shapes			
Finds unknown angles			
Recognises different types of triangles			
Knows that the angle sum of a triangle is 180° and uses this knowledge to construct a triangle			
Names parts of a circle			
Understands relationship between radius and diameter			

Transformation, tessellation Name and symmetry

1

In each example, shade more dots to make the dotted line a line of symmetry:

a

b

Draw a shape that has 4 lines of symmetry. You may like to sketch out some ideas on scrap paper first.

3 Do these pictures have rotational symmetry? If so, to which order?

а

Yes / No

Order:

b

Yes / No

Order:_

Yes / No

Order:

Yes / No

Order:__

Transformation, tessellation Name and symmetry

Look at each pair of figures. Decide if Shape A has been reflected, translated or rotated to arrive at

а

b

C

Shade shapes a and b to show:

Continue this tessellation across the grid:

Transformation, tessellation and symmetry

Name	

Why do quadrilaterals tessellate? Choose a quadrilateral to use as an example and explain using words and diagrams:

Recreate this diagram so that it is twice as big:

Skills	Not yet	Kind of	Got it
Identifies and draws lines of symmetry			
Identifies rotational symmetry and order			
Visualises, recognises and represents transformations – reflections, translations and rotations			
Continues tessellations			
Demonstrates understanding of why shapes tessellate			
Enlarges simple drawings			

Name the following 3D shapes and list their properties:

a _____ faces _____ edges

vertices

b

faces

edges

vertices

How are prisms and pyramids similar? How are they different? Explain using words and/or diagrams:

3 Demonstrate Euler's formula, using this triangular prism as an example:

Circle the nets that will fold to make this square based pyramid:

Finish the drawings using the bigger dots to guide you:

Use the dots to draw a triangular prism and a triangular pyramid:

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Skills	Not yet	Kind of	Got it
Identifies and names simple polyhedrons			
Lists faces, edges and vertices of simple polyhedrons			
Describes similarities and differences between pyramids and prisms			
Demonstrates a working knowledge of Euler's formula and how it applies to simple polyhedrons			
Visualises solids from nets			
Draws simple 3D shapes			

Add the missing compass points:

а

b

C

d If you were facing north and then made a clockwise three quarter turn, what new direction would you be facing?

e If you were facing north-west and then made a half turn, what direction would you be facing?

2 Draw a dot at each of the following coordinates on the grid:

a (2, 5)

b (1, 1)

c (4, -2)

d (2, -3)

e (-4, -3)

f (-1, 4)

g (-3, -5)

h (0, 0)

3 Draw and label a pair of axes for all four quadrants. The dot marks the point (0, 0). Mark six different coordinate points with letters A to F and write their coordinates in the boxes.

a A

b B

c C

d D

e E

f F

These are the coordinates to draw a parallelogram, but one of them is missing. Draw the parallelogram on the grid to the right and fill in the missing coordinate.

(-2, -3) (3, -3) (5, 4)

Translate the triangle so that point (1, 1) becomes point (-4, -2), and then reflect the original triangle in the x axis.

Skills	Not yet	Kind of	Got it
Names compass points and identifies locations			
Describes positions on the full coordinate grid			
Draws and labels axes in four quadrants			
Draws shapes on the grid and finds missing coordinates			
Translates shapes and reflects shapes in the axes			

Series G – Geometry – Student Progress Record

26.

ASSESSMENT ANSWERS

Pages 6-7

1a

- 3a straight
- **b** acute
- c revolution
- **d** right
- e obtuse
- f reflex

6 335

Pages 8-9

- 1 Answers will vary and may include: straight sided closed shape
- 2a square
- **b** isosceles triangle
- **c** trapezium
- **d** octagon
- e hexagon
- **f** rhombus or parallelogram or square
- **3** 540°

5 Answers will vary.

7 Answers will vary.

9 16 cm

Pages 10-12

- 2 Answers will vary.
- **3a** Yes; 4
- **b** No
- c No
- **d** Yes; 3

Pages 10-12

4a reflected

b translated

c reflected

d rotated

Answers will vary. The vertices form 360° when they meet.

Pages 13-14

1a pentagonal; based pyramid; <u>6</u> faces; <u>10</u> edges; <u>6</u> vertices

b rectangular; based prism; <u>6</u> faces; <u>12</u> edges; <u>8</u> vertices

c square based; pyramid; 5 faces; 8 edges; 5 vertices

2 Answers will vary and may include:

Similiarities:

- straight edges

- 3D shapes

Differences:

pyramids come to 1 point at the top

- prisms have 2 matching ends

3
$$F + V - E = 2$$

5 + 6 - 9 = 2

6 Answers will vary.

Pages 15-16

3a-f Answers will vary.

4 (0, 4)

Topic	Reference	Strand	Substrand	Objective
Lines and Angles	6G4b	Geometry	Properties of shapes	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
2D Shapes	6G2a	Geometry	Properties of shapes	Compare and classify geometric shapes based on their properties and sizes.
2D Shapes	6G3a	Geometry	Properties of shapes	Draw 2D shapes using given dimensions and angles.
2D Shapes	6G4a	Geometry	Properties of shapes	Find unknown angles in any triangles, quadrilaterals, and regular polygons.
2D Shapes	6G5	Geometry	Properties of shapes	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.
Transformation, Tessellation and Symmetry	6P2	Geometry	Position and direction	Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
3D Shapes	6G2b	Geometry	Properties of shapes	Describe simple 3D shapes.
3D Shapes	6G3b	Geometry	Properties of shapes	Recognise and build simple 3D shapes, including making nets.
Position	6P3	Geometry	Position and direction	Describe positions on the full coordinate grid (all four quadrants).