UKS2 Calculation Policy

Concrete, Pictorial, Abstract Approach

One of the key principles behind the Singapore Maths approach and Maths Mastery is based on the concrete, pictorial, abstract approach. This approach identifies three steps (or representations) that are necessary for pupils to develop an understanding of different concepts.

1. Concrete Representation

Pupils are first introduced to an idea or skill using real objects. In division, for example, this might be done by separating apples amongst children. This is a 'hands on' approach and all classrooms have a wide range of practical resources available for pupils to use.

2. Pictorial Representation

Pupils are encouraged to relate their concrete understanding to pictorial representations. These representations may be a diagram or a picture of the Mathematical problem.

3. Abstract Representation

This is the symbolic stage - the pupils use Mathematical symbols to represent problems, for example $12 \times 2=24$. Whilst this Calculation Policy aims to show the Concrete / Pictorial / Abstract approach to the different calculations, it is not always noted further up the year groups. However, it is expected that the Concrete / Pictorial / Abstract approach is used continuously in all new learning and calculations, even when not noted.

Year 5 - Addition

Jersey Curriculum for Mathematics - Statutory Requirements for Year 5: Number - Addition and Subtraction
Pupils should be taught to:

- Add and subtract whole numbers with more than 4 digits, including using written methods (column addition and subtraction).
- Add and subtract numbers mentally with increasingly large numbers.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Key Vocabulary

efficient written method, add, addition, more, plus, increase, sum, total, altogether, score, tens boundary, hundreds boundary, thousands boundary, units boundary, tenths boundary, inverse.

In Year 5, pupils will be exploring addition of numbers to 1000000 . They will begin the unit by using simple strategies to add, such as counting on. They will then focus on adding within 1000000. Pupils will use multiple key methods, such as the column method and number bonds to add numbers. Pupils will have access to concrete materials throughout, improving their visualisation and mental skills.

Method 1-Addition by counting on

(2) Count on 24000 from 32541 .

$32541+4000=36541$

$36541+20000=56541$
$32541+24000=56541$

3 Add 4000 to 208123.
Start at 208123. Count on in 1000s.

$208123+4000=$
Method 2 - Addition using the column method
(1)

15000
$+17000 \quad 5$ thousands +7 thousands $=12$ thousands +17000
32000 12 thousands $=1$ ten thousand +2 thousands
$15000+17000=32000$
The approximate total number of spectators at these events was 32000 .
(2) The actual number of spectators was 15473 and 16524.
$15473+16524=$
Add the ones.

15473
+16524

3 ones +4 ones $=7$ ones

Add the tens.

15473
+16524
97

7 tens +2 tens $=9$ tens

Add the hundreds.

$$
\begin{array}{r}
15473 \\
+16524 \\
\hline 997 \\
\hline
\end{array}
$$

$$
+16524 \quad 4 \text { hundreds }+5 \text { hundreds }=9 \text { hundreds }
$$

Add the thousands.

$$
15473 \quad 5 \text { thousands }+6 \text { thousands }=11 \text { thousands }
$$

$$
\begin{array}{r}
+16524 \\
\hline 1997
\end{array}
$$

11 thousands = 1 ten thousand +1 thousand
Add the ten thousands.

Mental Strategies

- Add numbers mentally with increasingly large numbers (eg: $10,162+2300=12,462$).
- Mentally add tenths (eg: $0.2+0.6=0.8)$ and one-digit numbers and tenths (eg: $8+0.3=$ 8.3).
- Use number bonds to one hundred knowledge to calculate complements to one using hundredths (eg: $0.83+0.17=1$).
- Use rounding to check answers to calculation and determine, in the context of a problem, levels of accuracy.

Year 5 - Subtraction

Jersey Curriculum for Mathematics - Statutory Requirements for Year 5: Number - Addition and Subtraction
 Pupils should be taught to:

- Add and subtract whole numbers with more than 4 digits, including using written methods (column addition and subtraction).
- Add and subtract numbers mentally with increasingly large numbers.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Key Vocabulary

efficient written method, subtract, subtraction, minus, decrease, difference between inverse, decimals, units and tenths boundary, column subtraction, exchange.

In Year 5, pupils will be exploring subtraction of numbers to 1000000 . They will use simple strategies to subtract, such as counting back. Pupils will then focus on subtracting within 1000 000. Pupils will use multiple key methods, such as the column method and number bonds to subtract numbers. Pupils will have access to concrete materials throughout, improving their visualisation and mental skills.

Method 1 - Subtraction by counting back
(1) Count back 300000 from 453672.

Count back 30000 from 153672.

Count back 3000 from 123672.

$123672-3000=$
(2)

Mr Nightingale has $£ 120672$ left in his bank account.
(3) Subtract 3000 from 650452.

Start at 650452 . Count back by 1000s.

(4) Count back in 100 s .

650452,650352 ,

$650452-300=$
(5) Count back in 10s.

650452, 650442,
$650452-30=$

Method 2 - Subtraction using the column method
(1) Subtract the number of runners in the two cities to compare them.

42270

$42270-37000=$
There were more runners in the London marathon than in the Boston marathon.

Find the difference between the number of runners in the New York City marathon and the Rome marathon.

Subtract the hundreds.
$55400-13700=$

Rename 1 thousand as 10 hundreds.

Subtract 7 hundreds from 14 hundreds.

Subtract the thousands. Subtract the ten thousands.

$$
\begin{array}{r}
5^{4} 14400 \\
-13700 \\
\hline 1700 \\
\hline
\end{array} \begin{array}{r}
5^{414} 400 \\
-13700 \\
\hline
\end{array}
$$

There were 41700 more runners in the New York City marathon than in the Rome marathon.

3 Find the difference between the number of runners in the London marathon and the New York City marathon.
$55400-42270=$

$55400-42270=13130$
$55 \nless \varnothing 0$
There were 13130 fewer runners in the London marathon than in the New York City marathon.

-42270
13130

Mental Strategies

- Subtract increasingly large numbers mentally (eg: $12,654-1,341=11,213$).
- Mentally subtract tenths (eg: $0.7-0.5=0.2$) and one-digit whole numbers and tenths (eg: $8-0.3=7.7$).
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Year 5 - Multiplication

Jersey Curriculum for Mathematics - Statutory Requirements for Year 5: Number - Multiplication and Division

Pupils should be taught to:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers.
- Establish whether a number up to 100 is prime and recall prime numbers up to 19 .
- Multiply numbers up to 4 digits by a one- or two-digit number using a written method, including long multiplication for two-digit numbers.
- Multiply and divide numbers mentally drawing upon known facts.
- Divide numbers up to 4 digits by a one-digit number using a written method of division and interpret remainders appropriately for the context. Use a calculator to reinforce results.
- Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

[^0]composite numbers, prime number, prime factor, cube number, square number, derive, factor pairs, formal written method, times, multiply, multiplied by, multiple of, product, short multiplication, partition, long multiplication, scaling, decimal place, units, tenths and hundreds.

In Year 5, pupils are taught to multiply 3- and 4-digit numbers by single- and double-digit numbers. Pupils are taught to find and define multiples and factors and common factors. Pupils work with prime numbers and determine what makes a number prime or composite. Pupils work with square and cube numbers before moving on to multiplying by 10,100 and 1000 . When multiplying, pupils are encouraged to use a variety of methods, including number bonds, column methods and the grid method. Number bonds are used to represent multiplicative word problems. Pupils then move on to multiply by 2-digit numbers before beginning to divide by 10,100 and 1000.

Method 1 - Multiplication using the column method
(1) $£ 14 \times 5=$

$$
\begin{array}{r}
14 \\
\times \quad 5 \\
\hline 20 \\
+50 \\
\hline 70
\end{array} 5 \times 4=20
$$

4 An adult membership to the golf course costs $£ 356$ for the year. How much would it cost for five adults to each buy a membership for one year?

It would cost $£ 1780$ for five adults to each buy a membership for one year.

Step 1 Multiply the ones.

2541
$\times \quad 3$
3

Step 2 Multiply the tens.

$$
\begin{array}{r}
2541 \\
\times \quad 3 \\
\hline 23 \\
\hline
\end{array}
$$

Step 4 Multiply the thousands.

$$
\begin{array}{r}
121541 \\
\times \quad 3 \\
\hline 7623 \\
\hline
\end{array}
$$

$1218 \times 9=$

	(100) 100	10	
1000	200	10	8
\downarrow	\downarrow	\downarrow	\downarrow
9000	1800	90	72

$$
\begin{array}{rr}
1000 \times 9= & 9000 \\
200 \times 9= & 1800 \\
10 \times 9= & 90 \\
8 \times 9= & 72 \\
\hline 1218 \times 9= & 10962 \\
\hline
\end{array}
$$

The total mass of the 9 cars is 10962 kg .

[^1](1) $35 \times 28=$

$30 \times 20=600$
$$
5 \times 20=100
$$
$30 \times 8=240$ $5 \times 8=40$
$30 \times 28=840$ $5 \times 28=140$
$840+140=980$
$35 \times 28=980$
There are 980 potato plants.
(2) There are 35 rows and each row has 28 potato plants.
$35 \times 28=$

row $2 \psi \%$ row $3+\frac{2}{2}+\frac{2}{2}+2+2+2+2+\frac{2}{2}+2+2+2+2+2+\frac{2}{2}$ \downarrow
row $35 \psi \%$
$35=10+10+10+5$
$10 \times 28=280$
$10 \times 28=280$
$10 \times 28=280$
$5 \times 28=140$
$35 \times 28=980$
There are 980 potato plants.
Method 3 - Multiplication using bar models
(1) (1) (1)
$1010 \quad 10$
$3 \times 200=600$
$3 \times 30=90 \quad 3 \times 1=3$
$231 \times 3=693$
$10 \times 200=2000$
$$
10 \times 30=300 \quad 10 \times 1=10
$$
\[

$$
\begin{aligned}
& 231 \times 10=2310 \\
& \hline 231 \times 13=3003 \\
& \hline
\end{aligned}
$$
\]

(2) $231 \times 13=$


```
231\times10=2310
```

$231 \times 3=693$
$231 \times 13=2310+693$
$=3003$
(3) $231 \times 13=$

$$
231
$$

$\begin{array}{r}\times \quad 13 \\ \hline 693\end{array} 231 \times 3=693$
$\frac{+2310}{3003} \longrightarrow 231 \times 10=2310$

There are 3003 stamps in the donation.

Mental Strategies

- Recognise and calculate factor pairs for any number.
- Use times table knowledge to derive multiples of any number.
- Establish whether a number is a prime number (up to 100) or a composite number and recall prime numbers up to 19 .
- To know what a square number is and recall all square numbers up to and including 144.
- To know what a cube number is and recall the first five cube numbers.

Year 5 - Division

Jersey Curriculum for Mathematics - Statutory Requirements for Year 5: Number - Multiplication and Division
Pupils should be taught to:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers.
- Establish whether a number up to 100 is prime and recall prime numbers up to 19 .
- Multiply numbers up to 4 digits by a one- or two-digit number using a written method, including long multiplication for two-digit numbers.
- Multiply and divide numbers mentally drawing upon known facts.
- Divide numbers up to 4 digits by a one-digit number using a written method of division and interpret remainders appropriately for the context. Use a calculator to reinforce results.
- Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

Key Vocabulary

divide, divided by, divided into, divisible by, remainder, quotient, inverse, factor, decimal place, units, tenths, scaling, short division

In Year 5, pupils are taught to divide 3- and 4-digit numbers by single-digit numbers. Pupils are first taught to divide by 10,100 and 1000. Next, they are taught to divide divide 3 - and 4 -digit numbers by single-digit numbers without remainders and are encouraged to use a variety of methods, including number bonds and long division. Pupils then move on to divide 3-and 4-digit numbers by single-digit numbers with remainders. They are encouraged to use a variety of methods, including number bonds, short division and bar models.

Method 1 -Division using number bonds and long division
Dividing without a remainder
(1) $640 \div 2=\square$

(2) $640 \div 2=$

$600 \div 2=300$

$40 \div 2=20$

$640 \div 2=320$
Each class will get 320 pencils.
(1) $1968 \div 6=$

Look for multiples of 6

18 hundreds $\div 6=3$ hundreds $1800 \div 6=300$

12 tens $\div 6=2$ tens $120 \div 6=20$

48 ones $\div 6=8$ ones $48 \div 6=8$
$1968 \div 6=328$
(2) $1968 \div 6=$

$1800 \div 6=$
$■$

$$
\begin{array}{r}
328 \\
6968 \\
-1800 \\
\hline 1668 \\
-\quad 120 \\
\hline 488 \\
-\quad 48 \\
\hline
\end{array}
$$

$1968 \div 6=328$
Each of the charities received $£ 328$.

Method 2 - Division using the short division method with number bonds
Dividing with remainders
(1) $469 \div 6=$

$6 \longdiv { 4 6 4 }$

$6 \longdiv { 7 \quad 6 \quad 9 }$

$6 \longdiv { 4 8 }$ remainder 1

78 full boxes are packed by the end of each day.
There will be 1 watermelon left unpacked.

Method 3 - Division using bar models

Dividing with remainders
2 Lulu has 469 g of sugar flowers to decorate 6 cakes.
She puts an equal amount of sugar flowers on each cake.
What is the mass of the sugar flowers on 1 cake?
$469 \div 6=$
$6 \longdiv { 4 6 9 }$ remainder 1
$-420 \longrightarrow 420 \div 6=70$

$\underbrace{}_{\frac{1}{6}}$
$1 \div 6=\frac{1}{6}$
$469 \div 6=78 \frac{1}{6}$
The mass of the sugar flowers on 1 cake is $78 \frac{1}{6} \mathrm{~g}$.

Mental Strategies

- Multiply and divide numbers mentally drawing upon known facts.
- Associate fractions with division.

Year 6 - Order of Operations

Jersey Curriculum for Mathematics - Statutory Requirements for Year 6: Number - Addition, Subtraction, Multiplication and Division
Pupils should be taught to:

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using a written method of multiplication.
- Divide numbers up to 4 digits by a two-digit whole number using a written method of division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
- Perform mental calculations, including with mixed operations and large number.
- Identify common factors, common multiples and prime numbers.
- Use their knowledge of the order of operations to carry out calculations involving the four operations.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving addition, subtraction, multiplication and division.
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Key Vocabulary

order of operations, column addition, add, in total, answer, tens boundary, hundreds boundary, thousands boundary, millions boundary, units boundary, tenths boundary, hundredths boundary, decimal place, inverse, BODMAS, Triangle of Truth.

In Year 6, pupils will use previous methods taught to solve addition problems. Pupils will be exploring the four operations, in combination and in isolation. They will solve expressions involving brackets, exponents, multiplication, division, addition and subtraction. Addition and Subtraction are not explicitly taught and are intertwined within Order of Operations.

Using mixed operations - without brackets

1 First, multiply or divide, working from left to right. Then, add or subtract, working from left to right.

(2) Calculate $12+30 \div 5 \times 4$.

Holly is correct. $=\quad \begin{gathered}\downarrow \\ \end{gathered}$

Using mixed operations - with brackets
Ruby and Charles are working on 2 equations.

How can they solve the equations?
(1) $15-4 \times 3=$
$15-4 \times 3=15-12$
$=3$
$15-4 \times 3=3$

(2) $(15-4) \times 3=$
$(15-4) \times 3=11 \times 3$
$=33$
Complete the calculation in the () first. Then, multiply.

BODMAS / Triangle of Truth

Mental Strategies

- Add numbers mentally with increasingly large numbers (eg: $10,162+2,300=12,462$).
- Add decimal numbers mentally (up to two decimal places).
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Year 6 - Multiplication

Jersey Curriculum for Mathematics - Statutory Requirements for Year 6: Number - Addition,
Subtraction, Multiplication and Division
Pupils should be taught to:

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using a written method of multiplication.
- Divide numbers up to 4 digits by a two-digit whole number using a written method of division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Use their knowledge of the order of operations to carry out calculations involving the four operations.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving addition, subtraction, multiplication and division.
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Key Vocabulary

common factors, multiples, prime, formal written method, multiply, product, multiplied by, multiple of, product, short and long multiplication, partition, scaling, decimal place, units, tenths and hundredths.

In Year 6, pupils are taught to Multiply multi-digit numbers up to 4 digits by a two-digit whole number using a written method of multiplication. Pupils are taught to find and define common multiples and factors. Pupils work with prime numbers and determine what makes a number prime or composite. Pupils will also work with square and cube numbers. When multiplying, pupils are encouraged to use a variety of methods they have used in the past, however, are encouraged to use partitioning and the column method of multiplication.

Method l-Multiplication using partitioning and column method
(1) $310 \times 20=$

$310 \times 20=6200$
(2) $310 \times 23=$

$\mathbf{t h}$	\mathbf{h}	\mathbf{t}	\mathbf{o}
	3	1	0
3	1	0	0

$310 \times 10=3100$
$310 \times 20=6200$
$310 \times 23=6200+930$
$310 \times 3=930$
(3) $310 \times 23=$

There are 7130 question cards in 23 sets of the game.
(4)
$\begin{array}{cccc}\text { Find the product of } 1310 \text { and } 23 . & \begin{array}{c}\text { Estimate } \\ 1310 \times 23 \text { by finding } \\ 1300 \times 20 .\end{array} & 3 & 1 \\ 1 & 0 & \end{array}$

\times		2	3
	3	9	3

(1) $825 \mathrm{~kg} \times 16=$

The keeper prepares 13200 kg of food for the elephants
over 16 weeks.
(4) $1825 \times 32=$
$1825 \times 32=32000+26400$

$$
=58400
$$

(1) Estimate the product of 28 and 1229 .
$28 \times 1229 \approx 30 \times 1000$
$=30000$
We use \approx to show approximately equal to.
(2) $28 \times 1229=$
$\begin{array}{llll}1 & 2 & { }^{7} & 2\end{array}$

\times		8
983		

$1 \quad 2$1 2
24

$28 \times 1229=9832+24580$
$=34412$

Mental Strategies

- Use scaling to solve decimal number problems as whole number problems using the rule the number of decimal digits in the question is the same as the number of decimal digits in the answer.
- Identify common factors, common multiples and prime numbers.
- Use common factors to simplify fractions mentally.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Year 6 - Division

Jersey Curriculum for Mathematics - Statutory Requirements for Year 6: Number - Addition, Subtraction, Multiplication and Division
Pupils should be taught to:

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using a written method of multiplication.
- Divide numbers up to 4 digits by a two-digit whole number using a written method of division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Use their knowledge of the order of operations to carry out calculations involving the four operations.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving addition, subtraction, multiplication and division.
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Key Vocabulary

divide, divided by, divided into, divisible by, remainder, factor, quotient, inverse, decimal place, units, tenths, hundredths, formal written methods , HMS 」 (How many?, Multiply, Subtract, Bringdown).

In Year 6, pupils are taught to numbers up to 4 digits by a two-digit whole number using a written method of division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Pupils are encouraged to use a variety of methods, including bar models, place value, partitioning, long division and short division.

Method 1 - Division using bar models and place value

Method 2 - Division using long division and partitioning

(1) $4676 \div 20=$

$4676 \div 20=233$ remainder 16
The machine can pack 233 boxes of 20 pens with 16 pens left over.
(2) $4676 \div 28=$
$2 8 \longdiv { 4 6 7 6 }$
$-28 \longrightarrow 28$ hundreds $\div 28=1$ hundred
$2 8 \longdiv { 4 6 6 6 }$
-28
187 $\longrightarrow 28$ hundreds $\div 28=1$ hundred
$\frac{-168}{\downarrow} \longrightarrow 168$ tens $\div 28=6$ tens
$2 8 \longdiv { 4 } \begin{array} { l } { 1 } \\ { 4 } \\ { \hline } \end{array} \quad 7 \quad 7 6$
-28
$\begin{aligned} 187\end{aligned}$$\longrightarrow 28$ hundreds $\div 28=1$ hundred
$-168 \longrightarrow 168$ tens $\div 28=6$ tens
$-\quad 196$
0 196 ones $\div 28=7$ ones

Method 3 - Division using the short division method
3 Can the machine pack 364 pens into boxes of 28?
$2 8 \longdiv { 3 6 \frac { 1 } { 4 } }$
$2 8 \longdiv { 3 6 \frac { 8 } { 4 } } \longrightarrow 8 4 \div 2 8 = 3$
$364 \div 28=13$
There are 13 boxes with no pens left over.

All 3 Methods

1) Charles used three different methods to calculate $468 \div 36$.

Method 1
Method 2

$3 6 \longdiv { 4 6 8 }$
$\begin{array}{r}-36 \\ \hline 108\end{array}$
108
-10

All 3 Methods - with remainders

(1) $581 \div 18=$
18) $\begin{array}{r}32 \\ 581\end{array}$ remainder 5
$\frac{-54}{41} \longrightarrow 3$ tens $\times 18=54$ tens
What does the quotient stand for? $\begin{array}{r}-\quad 36 \\ \hline\end{array} \longrightarrow 2$ ones $\times 18=36$ ones What does the remainder stand for?
$581 \div 18=32$ remainder 5
Each classroom will receive 32 rulers.
The remaining 5 rulers will be kept in the school office

2 Ruby worked out the division this way.
$1 8 \longdiv { 5 8 8 ^ { 4 } 1 }$ remainder 5

- Which division method do you prefer?

Mental Strategies

- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Calculate a fraction of an amount.

[^0]: Key Vocabulary

[^1]: Method 2 - Multiplication using the grid method

